China wholesaler TANN UCT 206 for shaft adjustment and belt-tightening devices wholesaler

Product Description

>>Click to the corresponding page

UCT 201-212

>>Why choose us

HOUSING MATERIAL Cast iron HT200 / Class 25B / GG20 / Cr.20 High stress loading
Bending stess<300 Mpa
BEARING MATERIAL Bearing steel Gcr15 / 52100 / 100Cr6 High & uniform hardness(61~65HRC)
High resistence
TRANSPORT PACKAGE Color box/Waterproof Plastic In Individual 1 / in several pieces together Customized solutions for your requirements
Bulk sale or whole sale
Dealer or terminal customer
QUALIFICATION International Standard Organization ISO9001 Guaranteed product qulity and company credit
BRAND TANN Experienced export manufacture for more than 10 years  Professional technical advices
Experienced market solutions
Thoughtful and careful services


  • UCT take-up units are suggested for industrial applications where normal loads are encountered.
  • UCT take-up units are used where shaft adjustment and belt-tightening devices are required, such as in conveyor applications.
  • These units provide compact, efficient supports for adjustable shafts and conveyor take-up pulleys.
  • Each unit comes assembled and ready for mounting.
  • These units use wide inner ring ball bearings with self-aligning spherical outside diameters that compensate for shaft misalignment.
  • TANN UCT series housed units feature the TANN set screw locking (UC) bearing insert.
  • Bearing pre-lubricated and ready for immediate installation.
  • Grease fitting supplied for re-lubrication.
  • The bonded seal design is well-suited for industrial applications involving wet or dirty environments.
  • Slot spacing and width are interchangeable with competitive units.
    Housing designed for ease of bearing

Applications: mining, metallurgy, agriculture, chemical industry, textile, printing and dyeing, conveying machinery, etc. 


>>  Technical Data 

2  >>  Advantages

3  >>  Manufacture Process

4  >>  Packaging

5 >>  TANN other series of products

1 >> Technical Data

Click to the corresponding page

UCT 201-212

Unit No. Dimensions (mm / inch) Bearing No. mm inch Housing No. Weight (kg)
d O g p q S b k e a w j l h t B n
UCT201 12 16 10 51 32 19 51 12 76 89 94 32 21 61 44.5 31 12.7 UC201 T204 0.80 
UCT201-8 1/2 5/8 25/64 2-1/64 1-1/4 3/4 2-1/64 15/32 2-63/64 3-1/2 3-11/16 1-1/4 13/16 2-13/32 1-3/4 1.2205 0.5 UC201-8 0.79 
UCT202 15 16 10 51 32 19 51 12 76 89 94 32 21 61 44.5 31 12.7 UC202 T204 0.79 
UCT202-9 9/16 5/8 25/64 2-1/64 1-1/4 3/4 2-1/64 15/32 2-63/64 3-1/2 3-11/16 1-1/4 13/16 2-13/32 1-3/4 1.2205 0.5 UC202-9 0.79 
UCT202-10 5/8 UC202-10 0.79 
UCT203 17 16 10 51 32 19 51 12 76 89 94 32 21 61 44.5 31 12.7 UC203 T204 0.78 
UCT203-11 11/16 5/8 25/64 2-1/64 1-1/4 3/4 2-1/64 15/32 2-63/64 3-1/2 3-11/16 1-1/4 13/16 2-13/32 1-3/4 1.2205 0.5 UC203-11 0.77 
UCT204 20 16 10 51 32 19 51 12 76 89 94 32 21 61 44.5 31 12.7 UC204 T204 0.76 
UCT204-12 3/4 5/8 25/64 2-1/64 1-1/4 3/4 2-1/64 15/32 2-63/64 3-1/2 3-11/16 1-1/4 13/16 2-13/32 1-3/4 1.2205 0.5 UC204-12 0.76 
UCT205 25 16 10 51 32 19 51 12 76 89 97 32 24 62 48 34.1 14.3 UC205 T205 0.81 
UCT205-13 13/16 5/8 25/64 2-1/64 1-1/4 3/4 2-1/64 15/32 2-63/64 3-1/2 3-13/16 1-1/4 15/16 2-7/16 1-7/8 1.3425 0.563 UC205-13 0.85 
UCT205-14 7/8 UC205-14 0.84 
UCT205-15 15/16 UC205-15 0.82 
UCT205-16 1 UC205-16 0.81 
UCT206 30 16 10 56 37 22 57 12 89 102 113 37 28 70 53 38.1 15.9 UC206 T206 1.22 
UCT206-17 1-1/16 5/8 25/64 2-7/32 1-29/64 55/64 2-1/4 15/32 3-1/2 4-1/64 4-29/64 1-29/64 1-3/32 2-3/4 2-3/32 1.5 0.626 UC206-17 1.23 
UCT206-18 1-1/8 UC206-18 1.24 
UCT206-19 1-3/16 UC206-19 1.22 
UCT206-20 1-1/4 UC206-20 1.21 
UCT207 35 16 13 64 37 22 64 12 89 102 129 37 30 78 59.5 42.9 17.5 UC207 T207 1.44 
UCT207-20 1-1/4 5/8 33/64 2-33/64 1-29/64 55/64 2-33/64 15/32 3-1/2 4-1/64 5-5/64 1-29/64 1-3/16 3-5/64 2-11/32 1.689 0.689 UC207-20 1.50 
UCT207-21 1-5/16 UC207-21 1.46 
UCT207-22 1-3/8 UC207-22 1.44 
UCT207-23 1-7/16 UC207-23 1.41 
UCT208 40 19 16 83 49 29 83 16 102 114 144 49 33 89 69 49.2 19 UC208 T208 2.40 
UCT208-24 1-1/2 3/4 5/8 3-17/64 1-15/16 1-9/64 3-17/64 5/8 4-1/64 4-31/64 5-43/64 1-15/16 1-5/16 3-1/2 2-23/32 1.937 0.748 UC208-24 2.44 
UCT208-25 1-9/16 UC208-25 2.41 
UCT209 45 19 16 83 49 29 83 16 102 117 144 49 35 87 69 49.2 19 UC209 T209 2.36 
UCT209-26 1-5/8 3/4 5/8 3-17/64 1-15/16 1-9/64 3-17/64 5/8 4-1/64 4-39/64 5-43/64 1-15/16 1-3/8 3-27/64 2-23/32 1.937 0.748 UC209-26 2.46 
UCT209-27 1-11/16 UC209-27 2.42 
UCT209-28 1-3/4 UC209-28 2.38 
UCT210 50 19 16 83 49 29 86 16 102 117 149 49 37 90 74.5 51.6 19 UC210 T210 2.43 
UCT210-29 1-13/16 3/4 5/8 3-17/64 1-15/16 1-9/64 3-17/64 5/8 4-1/64 4-39/64 5-55/64 1-15/16 1-15/32 3-35/64 2-15/16 2.571 0.748 UC210-29 2.55 
UCT210-30 1-7/8 UC210-30 2.50 
UCT210-31 1-15/16 UC210-31 2.45 
UCT210-32 2 UC210-32 2.41 
UCT211 55 25 19 102 64 35 95 22 130 146 171 64 38 106 76 55.6 22.2 UC211 T211 4.11 
UCT211-32 2 63/64 3/4 4-1/64 2-1/32 1-3/8 3-3/4 55/64 5-1/8 5-3/4 6-47/64 2-33/64 1-1/2 4-11/64 3 2.189 0.874 UC211-32 4.26 
UCT211-33 2-1/16 UC211-33 4.20 
UCT211-34 2-1/8 UC211-34 4.15 
UCT211-35 2-3/16 UC211-35 4.09 
UCT212 60 32 19 102 64 35 102 22 130 146 194 64 42 119 89 65.1 25.4 UC212 T212 4.97 
UCT212-36 2-1/4 1-17/64 3/4 4-1/64 2-1/32 1-3/8 4-1/64 55/64 5-1/8 5-3/4 7-41/64 2-33/64 1-21/32 4-11/16 3-1/2 2.563 1 UC212-36 5.10 
UCT212-37 2-5/16 UC212-37 5.02 
UCT212-38 2-3/8 UC212-38 4.95 
UCT212-39 2-7/16 UC212-39 4.88 

2 >> Advantages

MAINTENANCE Low maintenance due to its self-aligning capabilities
LUBRICATION Fast and easy re-lubrication due to a built-in lubrication hole
SELF-ALIGNMENT Rational self-alignment
LOAD Larger load carrying capacity, relubricable, longer service life of the units
SEAL Efficient, sealing ability of the units with covers is perfect
HOUSE Solid housing, provide maximum rigidity against deformation for any condition
LOCK Easy and positive locking to shaft
HEAT-TREATMENT Special heat-treatment on bearing inner ring prevent causing cracking
DEVICE Unique device to prevent bearing outer ring rotation
INTERCHANGEABILITY Complete interchangeability between bearing and housing
INSTALLATION Easy installation
POSITION Easy positioning for mounting

3 >> Manufacture Process

FACTORY WARRANTED -Granville can offers an array of tools for efficientofferthey maintenance.
-We also offer reliability systems and services to help maintenance.
-Personnel maximize operating performance and detect equipment.
-Dealing with problems before they become critical.

Advantage Manufacturing Processes& Quality Control We strictly follow the core of quality management process control:

APQP: product quality advance plHangZhou

SPC: Statistical process control

MSA: Measurement system analysis

FMEA: Analysis of potential failure modes and consequences

PPAP: Production part approval procedure

01 Heat Treatment
02 Centerless Grinding Machine 11200 (most advanced)
03 Automatic P roduction Lines for Raceway
04 Automatic P roduction Lines for Raceway
05 Ultras onic Cleaning of Rings
06 Automatic Ass embly
07 Ultras onic Cleaning of Bearings
08 Ultras onic Cleaning of Bearings
09 Measurement of Bearing Vibration (Acceleration)
10 Measurement of Bearing Vibration (Speed)
11 Laser Marking
12 Automatic Packing

4 >> Packaging

color box HangZhou, China FOB HangZhou

5 >> TANN other series of products



You May Like(No.)
1 UC
2 SA
4 H
10 UCT
12 SN

Please feel free to get information from Granville:)


Advance automatic lines
Granville takes her every effort in purchasing the most advanced bearing process equipment, CNC automatic facilities are widely used in the factory and we are keep investing to improve more.
Full range bearing & units
We provide a strong full range products, including:
Radial ball bearings
Pillow block and wide range of housed units
Electric motor and components
One-stop partnerships products
Premium Quality
Quality control from beginning
All products are manufactured exclusively by companies with ISO 9001:2008 certified Quality System which use state-of-the-art machines.The quality path starts from beginning to deliver and goods’ quality trackable.

What Are Screw Shaft Threads?

A screw shaft is a threaded part used to fasten other components. The threads on a screw shaft are often described by their Coefficient of Friction, which describes how much friction is present between the mating surfaces. This article discusses these characteristics as well as the Material and Helix angle. You’ll have a better understanding of your screw shaft’s threads after reading this article. Here are some examples. Once you understand these details, you’ll be able to select the best screw nut for your needs.

Coefficient of friction between the mating surfaces of a nut and a screw shaft

There are 2 types of friction coefficients. Dynamic friction and static friction. The latter refers to the amount of friction a nut has to resist an opposing motion. In addition to the material strength, a higher coefficient of friction can cause stick-slip. This can lead to intermittent running behavior and loud squeaking. Stick-slip may lead to a malfunctioning plain bearing. Rough shafts can be used to improve this condition.
The 2 types of friction coefficients are related to the applied force. When applying force, the applied force must equal the nut’s pitch diameter. When the screw shaft is tightened, the force may be removed. In the case of a loosening clamp, the applied force is smaller than the bolt’s pitch diameter. Therefore, the higher the property class of the bolt, the lower the coefficient of friction.
In most cases, the screwface coefficient of friction is lower than the nut face. This is because of zinc plating on the joint surface. Moreover, power screws are commonly used in the aerospace industry. Whether or not they are power screws, they are typically made of carbon steel, alloy steel, or stainless steel. They are often used in conjunction with bronze or plastic nuts, which are preferred in higher-duty applications. These screws often require no holding brakes and are extremely easy to use in many applications.
The coefficient of friction between the mating surfaces of t-screws is highly dependent on the material of the screw and the nut. For example, screws with internal lubricated plastic nuts use bearing-grade bronze nuts. These nuts are usually used on carbon steel screws, but can be used with stainless steel screws. In addition to this, they are easy to clean.

Helix angle

In most applications, the helix angle of a screw shaft is an important factor for torque calculation. There are 2 types of helix angle: right and left hand. The right hand screw is usually smaller than the left hand one. The left hand screw is larger than the right hand screw. However, there are some exceptions to the rule. A left hand screw may have a greater helix angle than a right hand screw.
A screw’s helix angle is the angle formed by the helix and the axial line. Although the helix angle is not usually changed, it can have a significant effect on the processing of the screw and the amount of material conveyed. These changes are more common in 2 stage and special mixing screws, and metering screws. These measurements are crucial for determining the helix angle. In most cases, the lead angle is the correct angle when the screw shaft has the right helix angle.
High helix screws have large leads, sometimes up to 6 times the screw diameter. These screws reduce the screw diameter, mass, and inertia, allowing for higher speed and precision. High helix screws are also low-rotation, so they minimize vibrations and audible noises. But the right helix angle is important in any application. You must carefully choose the right type of screw for the job at hand.
If you choose a screw gear that has a helix angle other than parallel, you should select a thrust bearing with a correspondingly large center distance. In the case of a screw gear, a 45-degree helix angle is most common. A helix angle greater than zero degrees is also acceptable. Mixing up helix angles is beneficial because it allows for a variety of center distances and unique applications.

Thread angle

The thread angle of a screw shaft is measured from the base of the head of the screw to the top of the screw’s thread. In America, the standard screw thread angle is 60 degrees. The standard thread angle was not widely adopted until the early twentieth century. A committee was established by the Franklin Institute in 1864 to study screw threads. The committee recommended the Sellers thread, which was modified into the United States Standard Thread. The standardized thread was adopted by the United States Navy in 1868 and was recommended for construction by the Master Car Builders’ Association in 1871.
Generally speaking, the major diameter of a screw’s threads is the outside diameter. The major diameter of a nut is not directly measured, but can be determined with go/no-go gauges. It is necessary to understand the major and minor diameters in relation to each other in order to determine a screw’s thread angle. Once this is known, the next step is to determine how much of a pitch is necessary to ensure a screw’s proper function.
Helix angle and thread angle are 2 different types of angles that affect screw efficiency. For a lead screw, the helix angle is the angle between the helix of the thread and the line perpendicular to the axis of rotation. A lead screw has a greater helix angle than a helical one, but has higher frictional losses. A high-quality lead screw requires a higher torque to rotate. Thread angle and lead angle are complementary angles, but each screw has its own specific advantages.
Screw pitch and TPI have little to do with tolerances, craftsmanship, quality, or cost, but rather the size of a screw’s thread relative to its diameter. Compared to a standard screw, the fine and coarse threads are easier to tighten. The coarser thread is deeper, which results in lower torques. If a screw fails because of torsional shear, it is likely to be a result of a small minor diameter.


Screws have a variety of different sizes, shapes, and materials. They are typically machined on CNC machines and lathes. Each type is used for different purposes. The size and material of a screw shaft are influenced by how it will be used. The following sections give an overview of the main types of screw shafts. Each 1 is designed to perform a specific function. If you have questions about a specific type, contact your local machine shop.
Lead screws are cheaper than ball screws and are used in light-duty, intermittent applications. Lead screws, however, have poor efficiency and are not recommended for continuous power transmission. But, they are effective in vertical applications and are more compact. Lead screws are typically used as a kinematic pair with a ball screw. Some types of lead screws also have self-locking properties. Because they have a low coefficient of friction, they have a compact design and very few parts.
Screws are made of a variety of metals and alloys. Steel is an economical and durable material, but there are also alloy steel and stainless steel types. Bronze nuts are the most common and are often used in higher-duty applications. Plastic nuts provide low-friction, which helps reduce the drive torques. Stainless steel screws are also used in high-performance applications, and may be made of titanium. The materials used to create screw shafts vary, but they all have their specific functions.
Screws are used in a wide range of applications, from industrial and consumer products to transportation equipment. They are used in many different industries, and the materials they’re made of can determine their life. The life of a screw depends on the load that it bears, the design of its internal structure, lubrication, and machining processes. When choosing screw assemblies, look for a screw made from the highest quality steels possible. Usually, the materials are very clean, so they’re a great choice for a screw. However, the presence of imperfections may cause a normal fatigue failure.

Self-locking features

Screws are known to be self-locking by nature. The mechanism for this feature is based on several factors, such as the pitch angle of the threads, material pairing, lubrication, and heating. This feature is only possible if the shaft is subjected to conditions that are not likely to cause the threads to loosen on their own. The self-locking ability of a screw depends on several factors, including the pitch angle of the thread flank and the coefficient of sliding friction between the 2 materials.
One of the most common uses of screws is in a screw top container lid, corkscrew, threaded pipe joint, vise, C-clamp, and screw jack. Other applications of screw shafts include transferring power, but these are often intermittent and low-power operations. Screws are also used to move material in Archimedes’ screw, auger earth drill, screw conveyor, and micrometer.
A common self-locking feature for a screw is the presence of a lead screw. A screw with a low PV value is safe to operate, but a screw with high PV will need a lower rotation speed. Another example is a self-locking screw that does not require lubrication. The PV value is also dependent on the material of the screw’s construction, as well as its lubrication conditions. Finally, a screw’s end fixity – the way the screw is supported – affects the performance and efficiency of a screw.
Lead screws are less expensive and easier to manufacture. They are a good choice for light-weight and intermittent applications. These screws also have self-locking capabilities. They can be self-tightened and require less torque for driving than other types. The advantage of lead screws is their small size and minimal number of parts. They are highly efficient in vertical and intermittent applications. They are not as accurate as lead screws and often have backlash, which is caused by insufficient threads.

China wholesaler TANN UCT 206 for shaft adjustment and belt-tightening devices   wholesaler China wholesaler TANN UCT 206 for shaft adjustment and belt-tightening devices   wholesaler

Recent Posts