China Good quality UCT211 take-up bearing units with compensation for shaft misalignment wholesaler

Product Description

>>Click to the corresponding page

UCT 201-212

>>Why choose us

HOUSING MATERIAL Cast iron HT200 / Class 25B / GG20 / Cr.20 High stress loading
Bending stess<300 Mpa
BEARING MATERIAL Bearing steel Gcr15 / 52100 / 100Cr6 High & uniform hardness(61~65HRC)
High resistence
TRANSPORT PACKAGE Color box/Waterproof Plastic In Individual 1 / in several pieces together Customized solutions for your requirements
Bulk sale or whole sale
Dealer or terminal customer
QUALIFICATION International Standard Organization ISO9001 Guaranteed product qulity and company credit
BRAND TANN Experienced export manufacture for more than 10 years  Professional technical advices
Experienced market solutions
Thoughtful and careful services


  • UCT take-up units are suggested for industrial applications where normal loads are encountered.
  • UCT take-up units are used where shaft adjustment and belt-tightening devices are required, such as in conveyor applications.
  • These units provide compact, efficient supports for adjustable shafts and conveyor take-up pulleys.
  • Each unit comes assembled and ready for mounting.
  • These units use wide inner ring ball bearings with self-aligning spherical outside diameters that compensate for shaft misalignment.
  • TANN UCT series housed units feature the TANN set screw locking (UC) bearing insert.
  • Bearing pre-lubricated and ready for immediate installation.
  • Grease fitting supplied for re-lubrication.
  • The bonded seal design is well-suited for industrial applications involving wet or dirty environments.
  • Slot spacing and width are interchangeable with competitive units.
    Housing designed for ease of bearing

Applications: mining, metallurgy, agriculture, chemical industry, textile, printing and dyeing, conveying machinery, etc. 


>>  Technical Data 

2  >>  Advantages

3  >>  Manufacture Process

4  >>  Packaging

5 >>  TANN other series of products

1 >> Technical Data

Click to the corresponding page

UCT 201-212

Unit No. Dimensions (mm / inch) Bearing No. mm inch Housing No. Weight (kg)
d O g p q S b k e a w j l h t B n
UCT201 12 16 10 51 32 19 51 12 76 89 94 32 21 61 44.5 31 12.7 UC201 T204 0.80 
UCT201-8 1/2 5/8 25/64 2-1/64 1-1/4 3/4 2-1/64 15/32 2-63/64 3-1/2 3-11/16 1-1/4 13/16 2-13/32 1-3/4 1.2205 0.5 UC201-8 0.79 
UCT202 15 16 10 51 32 19 51 12 76 89 94 32 21 61 44.5 31 12.7 UC202 T204 0.79 
UCT202-9 9/16 5/8 25/64 2-1/64 1-1/4 3/4 2-1/64 15/32 2-63/64 3-1/2 3-11/16 1-1/4 13/16 2-13/32 1-3/4 1.2205 0.5 UC202-9 0.79 
UCT202-10 5/8 UC202-10 0.79 
UCT203 17 16 10 51 32 19 51 12 76 89 94 32 21 61 44.5 31 12.7 UC203 T204 0.78 
UCT203-11 11/16 5/8 25/64 2-1/64 1-1/4 3/4 2-1/64 15/32 2-63/64 3-1/2 3-11/16 1-1/4 13/16 2-13/32 1-3/4 1.2205 0.5 UC203-11 0.77 
UCT204 20 16 10 51 32 19 51 12 76 89 94 32 21 61 44.5 31 12.7 UC204 T204 0.76 
UCT204-12 3/4 5/8 25/64 2-1/64 1-1/4 3/4 2-1/64 15/32 2-63/64 3-1/2 3-11/16 1-1/4 13/16 2-13/32 1-3/4 1.2205 0.5 UC204-12 0.76 
UCT205 25 16 10 51 32 19 51 12 76 89 97 32 24 62 48 34.1 14.3 UC205 T205 0.81 
UCT205-13 13/16 5/8 25/64 2-1/64 1-1/4 3/4 2-1/64 15/32 2-63/64 3-1/2 3-13/16 1-1/4 15/16 2-7/16 1-7/8 1.3425 0.563 UC205-13 0.85 
UCT205-14 7/8 UC205-14 0.84 
UCT205-15 15/16 UC205-15 0.82 
UCT205-16 1 UC205-16 0.81 
UCT206 30 16 10 56 37 22 57 12 89 102 113 37 28 70 53 38.1 15.9 UC206 T206 1.22 
UCT206-17 1-1/16 5/8 25/64 2-7/32 1-29/64 55/64 2-1/4 15/32 3-1/2 4-1/64 4-29/64 1-29/64 1-3/32 2-3/4 2-3/32 1.5 0.626 UC206-17 1.23 
UCT206-18 1-1/8 UC206-18 1.24 
UCT206-19 1-3/16 UC206-19 1.22 
UCT206-20 1-1/4 UC206-20 1.21 
UCT207 35 16 13 64 37 22 64 12 89 102 129 37 30 78 59.5 42.9 17.5 UC207 T207 1.44 
UCT207-20 1-1/4 5/8 33/64 2-33/64 1-29/64 55/64 2-33/64 15/32 3-1/2 4-1/64 5-5/64 1-29/64 1-3/16 3-5/64 2-11/32 1.689 0.689 UC207-20 1.50 
UCT207-21 1-5/16 UC207-21 1.46 
UCT207-22 1-3/8 UC207-22 1.44 
UCT207-23 1-7/16 UC207-23 1.41 
UCT208 40 19 16 83 49 29 83 16 102 114 144 49 33 89 69 49.2 19 UC208 T208 2.40 
UCT208-24 1-1/2 3/4 5/8 3-17/64 1-15/16 1-9/64 3-17/64 5/8 4-1/64 4-31/64 5-43/64 1-15/16 1-5/16 3-1/2 2-23/32 1.937 0.748 UC208-24 2.44 
UCT208-25 1-9/16 UC208-25 2.41 
UCT209 45 19 16 83 49 29 83 16 102 117 144 49 35 87 69 49.2 19 UC209 T209 2.36 
UCT209-26 1-5/8 3/4 5/8 3-17/64 1-15/16 1-9/64 3-17/64 5/8 4-1/64 4-39/64 5-43/64 1-15/16 1-3/8 3-27/64 2-23/32 1.937 0.748 UC209-26 2.46 
UCT209-27 1-11/16 UC209-27 2.42 
UCT209-28 1-3/4 UC209-28 2.38 
UCT210 50 19 16 83 49 29 86 16 102 117 149 49 37 90 74.5 51.6 19 UC210 T210 2.43 
UCT210-29 1-13/16 3/4 5/8 3-17/64 1-15/16 1-9/64 3-17/64 5/8 4-1/64 4-39/64 5-55/64 1-15/16 1-15/32 3-35/64 2-15/16 2.571 0.748 UC210-29 2.55 
UCT210-30 1-7/8 UC210-30 2.50 
UCT210-31 1-15/16 UC210-31 2.45 
UCT210-32 2 UC210-32 2.41 
UCT211 55 25 19 102 64 35 95 22 130 146 171 64 38 106 76 55.6 22.2 UC211 T211 4.11 
UCT211-32 2 63/64 3/4 4-1/64 2-1/32 1-3/8 3-3/4 55/64 5-1/8 5-3/4 6-47/64 2-33/64 1-1/2 4-11/64 3 2.189 0.874 UC211-32 4.26 
UCT211-33 2-1/16 UC211-33 4.20 
UCT211-34 2-1/8 UC211-34 4.15 
UCT211-35 2-3/16 UC211-35 4.09 
UCT212 60 32 19 102 64 35 102 22 130 146 194 64 42 119 89 65.1 25.4 UC212 T212 4.97 
UCT212-36 2-1/4 1-17/64 3/4 4-1/64 2-1/32 1-3/8 4-1/64 55/64 5-1/8 5-3/4 7-41/64 2-33/64 1-21/32 4-11/16 3-1/2 2.563 1 UC212-36 5.10 
UCT212-37 2-5/16 UC212-37 5.02 
UCT212-38 2-3/8 UC212-38 4.95 
UCT212-39 2-7/16 UC212-39 4.88 

2 >> Advantages

MAINTENANCE Low maintenance due to its self-aligning capabilities
LUBRICATION Fast and easy re-lubrication due to a built-in lubrication hole
SELF-ALIGNMENT Rational self-alignment
LOAD Larger load carrying capacity, relubricable, longer service life of the units
SEAL Efficient, sealing ability of the units with covers is perfect
HOUSE Solid housing, provide maximum rigidity against deformation for any condition
LOCK Easy and positive locking to shaft
HEAT-TREATMENT Special heat-treatment on bearing inner ring prevent causing cracking
DEVICE Unique device to prevent bearing outer ring rotation
INTERCHANGEABILITY Complete interchangeability between bearing and housing
INSTALLATION Easy installation
POSITION Easy positioning for mounting

3 >> Manufacture Process

FACTORY WARRANTED -Granville can offers an array of tools for efficientofferthey maintenance.
-We also offer reliability systems and services to help maintenance.
-Personnel maximize operating performance and detect equipment.
-Dealing with problems before they become critical.

Advantage Manufacturing Processes& Quality Control We strictly follow the core of quality management process control:

APQP: product quality advance plHangZhou

SPC: Statistical process control

MSA: Measurement system analysis

FMEA: Analysis of potential failure modes and consequences

PPAP: Production part approval procedure

01 Heat Treatment
02 Centerless Grinding Machine 11200 (most advanced)
03 Automatic P roduction Lines for Raceway
04 Automatic P roduction Lines for Raceway
05 Ultras onic Cleaning of Rings
06 Automatic Ass embly
07 Ultras onic Cleaning of Bearings
08 Ultras onic Cleaning of Bearings
09 Measurement of Bearing Vibration (Acceleration)
10 Measurement of Bearing Vibration (Speed)
11 Laser Marking
12 Automatic Packing

4 >> Packaging

color box HangZhou, China FOB HangZhou

5 >> TANN other series of products



You May Like(No.)
1 UC
2 SA
4 H
10 UCT
12 SN

Please feel free to get information from Granville:)


Advance automatic lines
Granville takes her every effort in purchasing the most advanced bearing process equipment, CNC automatic facilities are widely used in the factory and we are keep investing to improve more.
Full range bearing & units
We provide a strong full range products, including:
Radial ball bearings
Pillow block and wide range of housed units
Electric motor and components
One-stop partnerships products
Premium Quality
Quality control from beginning
All products are manufactured exclusively by companies with ISO 9001:2008 certified Quality System which use state-of-the-art machines.The quality path starts from beginning to deliver and goods’ quality trackable.

Lead Screws and Clamp Style Collars

If you have a lead screw, you’re probably interested in learning about the Acme thread on this type of shaft. You might also be interested in finding out about the Clamp style collars and Ball screw nut. But before you buy a new screw, make sure you understand what the terminology means. Here are some examples of screw shafts:

Acme thread

The standard ACME thread on a screw shaft is made of a metal that is resistant to corrosion and wear. It is used in a variety of applications. An Acme thread is available in a variety of sizes and styles. General purpose Acme threads are not designed to handle external radial loads and are supported by a shaft bearing and linear guide. Their design is intended to minimize the risk of flank wedging, which can cause friction forces and wear. The Centralizing Acme thread standard caters to applications without radial support and allows the thread to come into contact before its flanks are exposed to radial loads.
The ACME thread was first developed in 1894 for machine tools. While the acme lead screw is still the most popular screw in the US, European machines use the Trapezoidal Thread (Metric Acme). The acme thread is a stronger and more resilient alternative to square threads. It is also easier to cut than square threads and can be cut by using a single-point threading die.
Similarly to the internal threads, the metric versions of Acme are similar to their American counterparts. The only difference is that the metric threads are generally wider and are used more frequently in industrial settings. However, the metric-based screw threads are more common than their American counterparts worldwide. In addition, the Acme thread on screw shafts is used most often on external gears. But there is still a small minority of screw shafts that are made with a metric thread.
ACME screws provide a variety of advantages to users, including self-lubrication and reduced wear and tear. They are also ideal for vertical applications, where a reduced frictional force is required. In addition, ACME screws are highly resistant to back-drive and minimize the risk of backlash. Furthermore, they can be easily checked with readily available thread gauges. So, if you’re looking for a quality ACME screw for your next industrial project, look no further than ACME.

Lead screw coatings

The properties of lead screw materials affect their efficiency. These materials have high anti-corrosion, thermal resistance, and self-lubrication properties, which eliminates the need for lubrication. These coating materials include polytetrafluoroethylene (PFE), polyether ether ketone (PEK), and Vespel. Other desirable properties include high tensile strength, corrosion resistance, and rigidity.
The most common materials for lead screws are carbon steel, stainless steel, and aluminum. Lead screw coatings can be PTFE-based to withstand harsh environments and remove oil and grease. In addition to preventing corrosion, lead screw coatings improve the life of polymer parts. Lead screw assembly manufacturers offer a variety of customization options for their lead screw, including custom-molded nuts, thread forms, and nut bodies.
Lead screws are typically measured in rpm, or revolutions per minute. The PV curve represents the inverse relationship between contact surface pressure and sliding velocity. This value is affected by the material used in the construction of the screw, lubrication conditions, and end fixity. The critical speed of lead screws is determined by their length and minor diameter. End fixity refers to the support for the screw and affects its rigidity and critical speed.
The primary purpose of lead screws is to enable smooth movement. To achieve this, lead screws are usually preloaded with axial load, enabling consistent contact between a screw’s filets and nuts. Lead screws are often used in linear motion control systems and feature a large area of sliding contact between male and female threads. Lead screws can be manually operated or mortised and are available in a variety of sizes and materials. The materials used for lead screws include stainless steel and bronze, which are often protected by a PTFE type coating.
These screws are made of various materials, including stainless steel, bronze, and various plastics. They are also made to meet specific requirements for environmental conditions. In addition to lead screws, they can be made of stainless steel, aluminum, and carbon steel. Surface coatings can improve the screw’s corrosion resistance, while making it more wear resistant in tough environments. A screw that is coated with PTFE will maintain its anti-corrosion properties even in tough environments.

Clamp style collars

The screw shaft clamp style collar is a basic machine component, which is attached to the shaft via multiple screws. These collars act as mechanical stops, load bearing faces, or load transfer points. Their simple design makes them easy to install. This article will discuss the pros and cons of this style of collar. Let’s look at what you need to know before choosing a screw shaft clamp style collar. Here are some things to keep in mind.
Clamp-style shaft collars are a versatile mounting option for shafts. They have a recessed screw that fully engages the thread for secure locking. Screw shaft clamp collars come in different styles and can be used in both drive and power transmission applications. Listed below are the main differences between these 2 styles of collars. They are compatible with all types of shafts and are able to handle axial loads of up to 5500 pounds.
Clamp-style shaft collars are designed to prevent the screw from accidentally damaging the shaft when tightened. They can be tightened with a set screw to counteract the initial clamping force and prevent the shaft from coming loose. However, when tightening the screw, you should use a torque wrench. Using a set screw to tighten a screw shaft collar can cause it to warp and reduce the surface area that contacts the shaft.
Another key advantage to Clamp-style shaft collars is that they are easy to install. Clamp-style collars are available in one-piece and two-piece designs. These collars lock around the shaft and are easy to remove and install. They are ideal for virtually any shaft and can be installed without removing any components. This type of collar is also recommended for those who work on machines with sensitive components. However, be aware that the higher the OD, the more difficult it is to install and remove the collar.
Screw shaft clamp style collars are usually one-piece. A two-piece collar is easier to install than a one-piece one. The two-piece collars provide a more effective clamping force, as they use the full seating torque. Two-piece collars have the added benefit of being easy to install because they require no tools to install. You can disassemble one-piece collars before installing a two-piece collar.

Ball screw nut

The proper installation of a ball screw nut requires that the nut be installed on the center of the screw shaft. The return tubes of the ball nut must be oriented upward so that the ball nut will not overtravel. The adjusting nut must be tightened against a spacer or spring washer, then the nut is placed on the screw shaft. The nut should be rotated several times in both directions to ensure that it is centered.
Ball screw nuts are typically manufactured with a wide range of preloads. Large preloads are used to increase the rigidity of a ball screw assembly and prevent backlash, the lost motion caused by a clearance between the ball and nut. Using a large amount of preload can lead to excessive heat generation. The most common preload for ball screw nuts is 1 to 3%. This is usually more than enough to prevent backlash, but a higher preload will increase torque requirements.
The diameter of a ball screw is measured from its center, called the ball circle diameter. This diameter represents the distance a ball will travel during 1 rotation of the screw shaft. A smaller diameter means that there are fewer balls to carry the load. Larger leads mean longer travels per revolution and higher speeds. However, this type of screw cannot carry a greater load capacity. Increasing the length of the ball nut is not practical, due to manufacturing constraints.
The most important component of a ball screw is a ball bearing. This prevents excessive friction between the ball and the nut, which is common in lead-screw and nut combinations. Some ball screws feature preloaded balls, which avoid “wiggle” between the nut and the ball. This is particularly desirable in applications with rapidly changing loads. When this is not possible, the ball screw will experience significant backlash.
A ball screw nut can be either single or multiple circuits. Single or multiple-circuit ball nuts can be configured with 1 or 2 independent closed paths. Multi-circuit ball nuts have 2 or more circuits, making them more suitable for heavier loads. Depending on the application, a ball screw nut can be used for small clearance assemblies and compact sizes. In some cases, end caps and deflectors may be used to feed the balls back to their original position.

China Good quality UCT211 take-up bearing units with compensation for shaft misalignment   wholesaler China Good quality UCT211 take-up bearing units with compensation for shaft misalignment   wholesaler

Recent Posts